Spremljaj
Chris Child
Chris Child
Senior Lecturer, City, University of London
Preverjeni e-poštni naslov na city.ac.uk - Domača stran
Naslov
Navedeno
Navedeno
Leto
Ql-bt: Enhancing behaviour tree design and implementation with q-learning
R Dey, C Child
2013 IEEE Conference on Computational Inteligence in Games (CIG), 1-8, 2013
672013
NPCs as people, too: the extreme AI personality engine
J Georgeson, C Child
arXiv preprint arXiv:1609.04879, 2016
92016
Hand pose estimation using deep stereovision and markov-chain monte carlo
R Remilekun Basaru, G Slabaugh, E Alonso, C Child
Proceedings of the IEEE International Conference on Computer Vision …, 2017
82017
Agents and Environments
K Stathis, C Child, W Lu, GK Lekeas
Technical report, SOCS Consortium, 2002. IST32530/CITY/005/DN/I/a1, 2002
82002
Quantized census for stereoscopic image matching
RR Basaru, C Child, E Alonso, G Slabaugh
2014 2nd International Conference on 3D Vision 2, 22-29, 2014
72014
The apriori stochastic dependency detection (ASDD) algorithm for learning stochastic logic rules
C Child, K Stathis
International Workshop on Computational Logic in Multi-Agent Systems, 234-249, 2004
72004
HandyDepth: Example-based stereoscopic hand depth estimation using Eigen Leaf Node Features
RR Basaru, GG Slabaugh, C Child, E Alonso
2016 International Conference on Systems, Signals and Image Processing …, 2016
62016
Rendering non-euclidean space in real-time using spherical and hyperbolic trigonometry
D Osudin, C Child, YH He
Computational Science–ICCS 2019: 19th International Conference, Faro …, 2019
52019
Rule value reinforcement learning for cognitive agents
C Child, K Stathis
Proceedings of the fifth international joint conference on autonomous agents …, 2006
42006
Data‐driven recovery of hand depth using CRRF on stereo images
RR Basaru, C Child, E Alonso, G Slabaugh
IET Computer Vision 12 (5), 666-678, 2018
32018
Performance Enhancement of Deep Reinforcement Learning Networks using Feature Extraction
J Ollero, C Child
Advances in Neural Networks–ISNN 2018: 15th International Symposium on …, 2018
32018
Be the controller: A kinect tool kit for video game control-recognition of human motion using skeletal relational angles
N Hadjiminas, CHT Child
32012
SMART (Stochastic Model Acquisition with ReinforcemenT) learning agents: A preliminary report
C Child, K Stathis
Symposium on Adaptive Agents and Multi-agent Systems, 73-87, 2003
32003
Implementing racing AI using q-learning and steering behaviours
BP Trusler, C Child
Conference on Simulation and AI in Computer Games 11, 09-2014, 2014
22014
Be The controller: a kinect tool kit for video game control
N Hadjiminas, C Child
Computer Games, Multimedia and Allied Technology (CGAT 2012), 44, 2012
22012
Learning to Act with RVRL agents
CHT Child, K Stathis, A Garcez
22007
Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning
CHT Child, C Koluman, T Weyde
Proceedings of the 41st Annual Conference of the Cognitive Science Society …, 2019
12019
Implementing Racing AI using Q-Learning and Steering Behaviours
CHT Child, BP Trusler
15th International Conference on Intelligent Games and Simulation, 2014
12014
QL-BT: Enhancing Behaviour Tree Design and Implementation with Q-Learning
CHT Child, R Dey
Computational Intelligence in Games (CIG), 2013 IEEE Conference on, 275-282, 2013
12013
ORCID: 0000-0001-5425-2308, Koluman, C. and Weyde, T. ORCID: 0000-0001-8028-9905 (2019). Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning
CHT Child
Cogsci, 2019
2019
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20