Follow
Daan Fierens
Daan Fierens
Department of Computer Science, KULeuven
Verified email at cs.kuleuven.be
Title
Cited by
Cited by
Year
Inference and learning in probabilistic logic programs using weighted boolean formulas
D Fierens, G Van den Broeck, J Renkens, D Shterionov, B Gutmann, ...
Theory and Practice of Logic Programming 15 (3), 358-401, 2015
4052015
Mining data from intensive care patients
J Ramon, D Fierens, F Güiza, G Meyfroidt, H Blockeel, M Bruynooghe, ...
Advanced Engineering Informatics 21 (3), 243-256, 2007
1162007
Inference in probabilistic logic programs using weighted CNF's
D Fierens, GV Broeck, I Thon, B Gutmann, L De Raedt
arXiv preprint arXiv:1202.3719, 2012
1062012
Logical Bayesian networks and their relation to other probabilistic logical models
D Fierens, H Blockeel, M Bruynooghe, J Ramon
Inductive Logic Programming: 15th International Conference, ILP 2005, Bonn …, 2005
812005
Lifted variable elimination: Decoupling the operators from the constraint language
N Taghipour, D Fierens, J Davis, H Blockeel
Journal of Artificial Intelligence Research 47, 393-439, 2013
792013
Towards digesting the alphabet-soup of statistical relational learning
L De Raedt, B Demoen, D Fierens, B Gutmann, G Janssens, A Kimmig, ...
NIPS* 2008 Workshop Probabilistic Programming, Date: 2008/12/13-2008/12/13 …, 2008
592008
Instance-level accuracy versus bag-level accuracy in multi-instance learning
G Vanwinckelen, V Tragante Do O, D Fierens, H Blockeel
Data mining and knowledge discovery 30, 313-341, 2016
382016
Completeness results for lifted variable elimination
N Taghipour, D Fierens, G Van den Broeck, J Davis, H Blockeel
Artificial Intelligence and Statistics, 572-580, 2013
332013
Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs using weighted boolean formulas
D Fierens, G Van den Broeck, J Renkens, D Sht
Theory Pract. Log. Program 15 (3), 358-401, 2015
322015
Lifted variable elimination with arbitrary constraints
N Taghipour, D Fierens, J Davis, H Blockeel
Artificial Intelligence and Statistics, 1194-1202, 2012
302012
Constraints for probabilistic logic programming
D Fierens, G Van den Broeck, M Bruynooghe, L De Raedt
Proceedings of the NIPS probabilistic programming workshop 2, 129-174, 2012
242012
The ace data mining system, user’s manual
H Blockeel, L Dehaspe, J Ramon, J Struyf, A Van Assche, C Vens, ...
Katholieke Universiteit Leuven, Belgium, 2006
202006
A comparison of approaches for learning probability trees
D Fierens, J Ramon, H Blockeel, M Bruynooghe
Machine Learning: ECML 2005: 16th European Conference on Machine Learning …, 2005
192005
Logical bayesian networks
D Fierens, H Blockeel, J Ramon, M Bruynooghe
Third workshop on multi-relational data mining, 19-30, 2004
182004
A comparison of pruning criteria for probability trees
D Fierens, J Ramon, H Blockeel, M Bruynooghe
Machine Learning 78, 251-285, 2010
172010
ProbLog2: From probabilistic programming to statistical relational learning
J Renkens, D Shterionov, G Van den Broeck, J Vlasselaer, D Fierens, ...
Proc. of NIPS, 1-5, 2012
162012
Generalized ordering-search for learning directed probabilistic logical models
J Ramon, T Croonenborghs, D Fierens, H Blockeel, M Bruynooghe
Machine Learning 70, 169-188, 2008
162008
Three complementary approaches to context aware movie recommendation
H Rahmani, B Piccart, D Fierens, H Blockeel
Proceedings of the Workshop on Context-Aware Movie Recommendation, 57-60, 2010
152010
Instance-level accuracy versus bag-level accuracy in multi-instance learning
V Tragante do O, D Fierens, H Blockeel
Proceedings of the 23rd Benelux conference on artificial intelligence (BNAIC), 8, 2011
102011
Context-specific independence in directed relational probabilistic models and its influence on the efficiency of Gibbs sampling
D Fierens
ECAI 2010, 243-248, 2010
102010
The system can't perform the operation now. Try again later.
Articles 1–20