Christian Wirth
Christian Wirth
AI Engineer, Continental Automotive GmbH
Verified email at
Cited by
Cited by
A survey of preference-based reinforcement learning methods
C Wirth, R Akrour, G Neumann, J Fürnkranz
Journal of Machine Learning Research 18 (136), 1-46, 2017
UBY-a large-scale unified lexical-semantic resource based on LMF
I Gurevych, J Eckle-Kohler, S Hartmann, M Matuschek, CM Meyer, C Wirth
Proceedings of the 13th Conference of the European Chapter of the …, 2012
Model-free preference-based reinforcement learning
C Wirth, J Fürnkranz, G Neumann
Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016
On learning from game annotations
C Wirth, J Fürnkranz
IEEE Transactions on Computational Intelligence and AI in Games 7 (3), 304-316, 2014
Informed hybrid game tree search for general video game playing
T Joppen, MU Moneke, N Schröder, C Wirth, J Fürnkranz
IEEE Transactions on Games 10 (1), 78-90, 2017
Preference-based reinforcement learning: A preliminary survey
C Wirth, J Fürnkranz
Proceedings of the ECML/PKDD-13 Workshop on Reinforcement Learning from …, 2013
EPMC: Every visit preference Monte Carlo for reinforcement learning
C Wirth, J Fürnkranz
Asian Conference on Machine Learning, 483-497, 2013
A policy iteration algorithm for learning from preference-based feedback
C Wirth, J Fürnkranz
International Symposium on Intelligent Data Analysis, 427-437, 2013
Preference-based Monte Carlo tree search
T Joppen, C Wirth, J Fürnkranz
KI 2018: Advances in Artificial Intelligence: 41st German Conference on AI …, 2018
First steps towards learning from game annotations
C Wirth, J Fürnkranz
Proceedings of the ECAI Workshop on Preference Learning: Problems and …, 2012
Knowledge augmented machine learning with applications in autonomous driving: A survey
J Wörmann, D Bogdoll, E Bührle, H Chen, EF Chuo, K Cvejoski, L van Elst, ...
arXiv preprint arXiv:2205.04712, 2022
Efficient Preference-based Reinforcement Learning
C Wirth
Technische Universität, 2017
Informed Priors for Knowledge Integration in Trajectory Prediction
C Schlauch, C Wirth, N Klein
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023
Concept Embeddings for Fuzzy Logic Verification of Deep Neural Networks in Perception Tasks.
G Schwalbe, C Wirth, U Schmid
arXiv preprint arXiv:2201.00572, 2022
Humanzentrierte Künstliche Intelligenz: Erklärendes interaktives maschinelles Lernen für Effizienzsteigerung von Parametrieraufgaben
C Wirth, U Schmid, S Voget
Digitalisierung souverän gestalten II: Handlungsspielräume in digitalen …, 2022
Design of a smart helmet
L Hottner, E Bachlmair, M Zeppetzauer, C Wirth, A Ferscha
Proceedings of the Seventh International Conference on the Internet of …, 2017
Informed Hybrid Game Tree Search
T Joppen, M Moneke, N Schröder, C Wirth, J Fümkranz
Knowledge Engineering Group, Technische Universität Darmstadt, Tech. Rep., 2016
Learning from trajectory-based action preferences
C Wirth, J Fürnkranz
Proceedings of the ICRA 2013 Workshop on Autonomous Learning (to appear, 2013
Efficient Utility Function Learning for Multi-Objective Parameter Optimization with Prior Knowledge
FA Khan, JP Dietrich, C Wirth
arXiv preprint arXiv:2208.10300, 2022
Efficient Preference-based Reinforcement Learning: Using Surrogates for Solving Markov Decision Processes with Preferences
C Wirth
Technische Universität Darmstadt, 2017
The system can't perform the operation now. Try again later.
Articles 1–20