A survey of preference-based reinforcement learning methods C Wirth, R Akrour, G Neumann, J Fürnkranz Journal of Machine Learning Research 18 (136), 1-46, 2017 | 242 | 2017 |
UBY-a large-scale unified lexical-semantic resource based on LMF I Gurevych, J Eckle-Kohler, S Hartmann, M Matuschek, CM Meyer, C Wirth Proceedings of the 13th Conference of the European Chapter of the …, 2012 | 172 | 2012 |
Model-free preference-based reinforcement learning C Wirth, J Fürnkranz, G Neumann Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016 | 89 | 2016 |
On learning from game annotations C Wirth, J Fürnkranz IEEE Transactions on Computational Intelligence and AI in Games 7 (3), 304-316, 2014 | 23 | 2014 |
Informed hybrid game tree search for general video game playing T Joppen, MU Moneke, N Schröder, C Wirth, J Fürnkranz IEEE Transactions on Games 10 (1), 78-90, 2017 | 22 | 2017 |
Preference-based reinforcement learning: A preliminary survey C Wirth, J Fürnkranz Proceedings of the ECML/PKDD-13 Workshop on Reinforcement Learning from …, 2013 | 18 | 2013 |
EPMC: Every visit preference Monte Carlo for reinforcement learning C Wirth, J Fürnkranz Asian Conference on Machine Learning, 483-497, 2013 | 16 | 2013 |
A policy iteration algorithm for learning from preference-based feedback C Wirth, J Fürnkranz International Symposium on Intelligent Data Analysis, 427-437, 2013 | 10 | 2013 |
Preference-based Monte Carlo tree search T Joppen, C Wirth, J Fürnkranz KI 2018: Advances in Artificial Intelligence: 41st German Conference on AI …, 2018 | 9 | 2018 |
First steps towards learning from game annotations C Wirth, J Fürnkranz Proceedings of the ECAI Workshop on Preference Learning: Problems and …, 2012 | 7 | 2012 |
Knowledge augmented machine learning with applications in autonomous driving: A survey J Wörmann, D Bogdoll, E Bührle, H Chen, EF Chuo, K Cvejoski, L van Elst, ... arXiv preprint arXiv:2205.04712, 2022 | 6 | 2022 |
Efficient Preference-based Reinforcement Learning C Wirth Technische Universität, 2017 | 4 | 2017 |
Informed Priors for Knowledge Integration in Trajectory Prediction C Schlauch, C Wirth, N Klein Joint European Conference on Machine Learning and Knowledge Discovery in …, 2023 | 1 | 2023 |
Concept Embeddings for Fuzzy Logic Verification of Deep Neural Networks in Perception Tasks. G Schwalbe, C Wirth, U Schmid arXiv preprint arXiv:2201.00572, 2022 | 1 | 2022 |
Humanzentrierte Künstliche Intelligenz: Erklärendes interaktives maschinelles Lernen für Effizienzsteigerung von Parametrieraufgaben C Wirth, U Schmid, S Voget Digitalisierung souverän gestalten II: Handlungsspielräume in digitalen …, 2022 | 1 | 2022 |
Design of a smart helmet L Hottner, E Bachlmair, M Zeppetzauer, C Wirth, A Ferscha Proceedings of the Seventh International Conference on the Internet of …, 2017 | 1 | 2017 |
Informed Hybrid Game Tree Search T Joppen, M Moneke, N Schröder, C Wirth, J Fümkranz Knowledge Engineering Group, Technische Universität Darmstadt, Tech. Rep., 2016 | 1 | 2016 |
Learning from trajectory-based action preferences C Wirth, J Fürnkranz Proceedings of the ICRA 2013 Workshop on Autonomous Learning (to appear, 2013 | 1 | 2013 |
Efficient Utility Function Learning for Multi-Objective Parameter Optimization with Prior Knowledge FA Khan, JP Dietrich, C Wirth arXiv preprint arXiv:2208.10300, 2022 | | 2022 |
Efficient Preference-based Reinforcement Learning: Using Surrogates for Solving Markov Decision Processes with Preferences C Wirth Technische Universität Darmstadt, 2017 | | 2017 |