Follow
Jeannette Bohg
Title
Cited by
Cited by
Year
Data-driven grasp synthesis—a survey
J Bohg, A Morales, T Asfour, D Kragic
IEEE Transactions on robotics 30 (2), 289-309, 2013
9732013
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
6792021
Making sense of vision and touch: Learning multimodal representations for contact-rich tasks
MA Lee, Y Zhu, P Zachares, M Tan, K Srinivasan, S Savarese, L Fei-Fei, ...
IEEE Transactions on Robotics 36 (3), 582-596, 2020
354*2020
Leveraging big data for grasp planning
D Kappler, J Bohg, S Schaal
2015 IEEE international conference on robotics and automation (ICRA), 4304-4311, 2015
2512015
Interactive perception: Leveraging action in perception and perception in action
J Bohg, K Hausman, B Sankaran, O Brock, D Kragic, S Schaal, ...
IEEE Transactions on Robotics 33 (6), 1273-1291, 2017
2442017
Learning grasping points with shape context
J Bohg, D Kragic
Robotics and Autonomous Systems 58 (4), 362-377, 2010
209*2010
Opengrasp: a toolkit for robot grasping simulation
B León, S Ulbrich, R Diankov, G Puche, M Przybylski, A Morales, T Asfour, ...
Simulation, Modeling, and Programming for Autonomous Robots: Second …, 2010
1522010
Automatic LQR tuning based on Gaussian process global optimization
A Marco, P Hennig, J Bohg, S Schaal, S Trimpe
2016 IEEE international conference on robotics and automation (ICRA), 270-277, 2016
1402016
Learning of grasp selection based on shape-templates
A Herzog, P Pastor, M Kalakrishnan, L Righetti, J Bohg, T Asfour, ...
Autonomous Robots 36, 51-65, 2014
1352014
Meteornet: Deep learning on dynamic 3d point cloud sequences
X Liu, M Yan, J Bohg
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1302019
Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks
R Martín-Martín, MA Lee, R Gardner, S Savarese, J Bohg, A Garg
2019 IEEE/RSJ international conference on intelligent robots and systems …, 2019
1232019
Mind the gap-robotic grasping under incomplete observation
J Bohg, M Johnson-Roberson, B León, J Felip, X Gratal, N Bergström, ...
2011 IEEE international conference on robotics and automation, 686-693, 2011
1232011
Three-dimensional object reconstruction of symmetric objects by fusing visual and tactile sensing
J Ilonen, J Bohg, V Kyrki
The International Journal of Robotics Research 33 (2), 321-341, 2014
98*2014
Self-supervised learning of state estimation for manipulating deformable linear objects
M Yan, Y Zhu, N Jin, J Bohg
IEEE robotics and automation letters 5 (2), 2372-2379, 2020
932020
Probabilistic 3d multi-object tracking for autonomous driving
H Chiu, A Prioletti, J Li, J Bohg
arXiv preprint arXiv:2001.05673, 2020
922020
Combining learned and analytical models for predicting action effects
A Kloss, S Schaal, J Bohg
arXiv preprint arXiv:1710.04102 11, 2017
84*2017
Probabilistic articulated real-time tracking for robot manipulation
CG Cifuentes, J Issac, M Wüthrich, S Schaal, J Bohg
IEEE Robotics and Automation Letters 2 (2), 577-584, 2016
772016
Real-time perception meets reactive motion generation
D Kappler, F Meier, J Issac, J Mainprice, CG Cifuentes, M Wüthrich, ...
IEEE Robotics and Automation Letters 3 (3), 1864-1871, 2018
762018
Probabilistic object tracking using a range camera
M Wüthrich, P Pastor, M Kalakrishnan, J Bohg, S Schaal
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2013
762013
Concept2robot: Learning manipulation concepts from instructions and human demonstrations
L Shao, T Migimatsu, Q Zhang, K Yang, J Bohg
The International Journal of Robotics Research 40 (12-14), 1419-1434, 2021
652021
The system can't perform the operation now. Try again later.
Articles 1–20