Follow
Jeannette Bohg
Title
Cited by
Cited by
Year
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
10562021
Data-driven grasp synthesis—a survey
J Bohg, A Morales, T Asfour, D Kragic
IEEE Transactions on robotics 30 (2), 289-309, 2013
10262013
Making sense of vision and touch: Learning multimodal representations for contact-rich tasks
MA Lee, Y Zhu, P Zachares, M Tan, K Srinivasan, S Savarese, L Fei-Fei, ...
IEEE Transactions on Robotics 36 (3), 582-596, 2020
399*2020
Interactive perception: Leveraging action in perception and perception in action
J Bohg, K Hausman, B Sankaran, O Brock, D Kragic, S Schaal, ...
IEEE Transactions on Robotics 33 (6), 1273-1291, 2017
2682017
Leveraging big data for grasp planning
D Kappler, J Bohg, S Schaal
2015 IEEE international conference on robotics and automation (ICRA), 4304-4311, 2015
2662015
Learning grasping points with shape context
J Bohg, D Kragic
Robotics and Autonomous Systems 58 (4), 362-377, 2010
214*2010
Opengrasp: a toolkit for robot grasping simulation
B León, S Ulbrich, R Diankov, G Puche, M Przybylski, A Morales, T Asfour, ...
Simulation, Modeling, and Programming for Autonomous Robots: Second …, 2010
1552010
Meteornet: Deep learning on dynamic 3d point cloud sequences
X Liu, M Yan, J Bohg
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
1522019
Automatic LQR tuning based on Gaussian process global optimization
A Marco, P Hennig, J Bohg, S Schaal, S Trimpe
2016 IEEE international conference on robotics and automation (ICRA), 270-277, 2016
1492016
Learning of grasp selection based on shape-templates
A Herzog, P Pastor, M Kalakrishnan, L Righetti, J Bohg, T Asfour, ...
Autonomous Robots 36, 51-65, 2014
1392014
Variable impedance control in end-effector space: An action space for reinforcement learning in contact-rich tasks
R Martín-Martín, MA Lee, R Gardner, S Savarese, J Bohg, A Garg
2019 IEEE/RSJ international conference on intelligent robots and systems …, 2019
1372019
Mind the gap-robotic grasping under incomplete observation
J Bohg, M Johnson-Roberson, B León, J Felip, X Gratal, N Bergström, ...
2011 IEEE international conference on robotics and automation, 686-693, 2011
1242011
Self-supervised learning of state estimation for manipulating deformable linear objects
M Yan, Y Zhu, N Jin, J Bohg
IEEE robotics and automation letters 5 (2), 2372-2379, 2020
1032020
Three-dimensional object reconstruction of symmetric objects by fusing visual and tactile sensing
J Ilonen, J Bohg, V Kyrki
The International Journal of Robotics Research 33 (2), 321-341, 2014
103*2014
Probabilistic 3d multi-object tracking for autonomous driving
H Chiu, A Prioletti, J Li, J Bohg
arXiv preprint arXiv:2001.05673, 2020
1002020
Combining learned and analytical models for predicting action effects
A Kloss, S Schaal, J Bohg
arXiv preprint arXiv:1710.04102 11, 2017
91*2017
Concept2Robot: Learning Manipulation Concepts from Instructions and Human Demonstrations
JB Lin Shao, Toki Migimatsu, Qiang Zhang, Kaiyuan Yang
Robotics: Science and Systems, 2020
88*2020
Real-time perception meets reactive motion generation
D Kappler, F Meier, J Issac, J Mainprice, CG Cifuentes, M Wüthrich, ...
IEEE Robotics and Automation Letters 3 (3), 1864-1871, 2018
802018
Probabilistic articulated real-time tracking for robot manipulation
CG Cifuentes, J Issac, M Wüthrich, S Schaal, J Bohg
IEEE Robotics and Automation Letters 2 (2), 577-584, 2016
802016
Probabilistic object tracking using a range camera
M Wüthrich, P Pastor, M Kalakrishnan, J Bohg, S Schaal
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2013
782013
The system can't perform the operation now. Try again later.
Articles 1–20