A practical guide to multi-objective reinforcement learning and planning CF Hayes, R Rădulescu, E Bargiacchi, J Källström, M Macfarlane, ... Autonomous Agents and Multi-Agent Systems 36 (1), 26, 2022 | 310 | 2022 |
Learning to coordinate with coordination graphs in repeated single-stage multi-agent decision problems E Bargiacchi, T Verstraeten, D Roijers, A Nowé, H Hasselt International conference on machine learning, 482-490, 2018 | 49 | 2018 |
Multi-agent thompson sampling for bandit applications with sparse neighbourhood structures T Verstraeten, E Bargiacchi, PJK Libin, J Helsen, DM Roijers, A Nowé Scientific reports 10 (1), 6728, 2020 | 31* | 2020 |
Pareto conditioned networks M Reymond, E Bargiacchi, A Nowé arXiv preprint arXiv:2204.05036, 2022 | 26 | 2022 |
AI-Toolbox: A C++ library for reinforcement learning and planning (with Python bindings) E Bargiacchi, DM Roijers, A Nowé Journal of Machine Learning Research 21 (102), 1-12, 2020 | 23* | 2020 |
Cooperative Prioritized Sweeping. E Bargiacchi, T Verstraeten, DM Roijers AAMAS, 160-168, 2021 | 22* | 2021 |
Scalable optimization for wind farm control using coordination graphs T Verstraeten, PJ Daems, E Bargiacchi, DM Roijers, PJK Libin, J Helsen arXiv preprint arXiv:2101.07844, 2021 | 14 | 2021 |
Interactive multi-objective reinforcement learning in multi-armed bandits with gaussian process utility models DM Roijers, LM Zintgraf, P Libin, M Reymond, E Bargiacchi, A Nowé Machine Learning and Knowledge Discovery in Databases: European Conference …, 2021 | 11 | 2021 |
Reinforcement learning 101 with a virtual reality game Y Coppens, E Bargiacchi, A Nowé Proceedings of the 1st international workshop on education in artificial …, 2019 | 8 | 2019 |
Decentralized solutions and tactics for rts E Bargiacchi, CR Verschoor, G Li, DM Roijers BNAIC 2013: Proceedings of the 25th Benelux Conference on Artificial …, 2013 | 7 | 2013 |
Multi-agent rmax for multi-agent multi-armed bandits E Bargiacchi, R Avalos, T Verstraeten, P Libin, A Nowé, DM Roijers Proc. of Adaptive and Learning Agents Worksh, 2022 | 6 | 2022 |
P1415R1: SG19 Machine Learning Layered List M Wong, V Reverdy, R Dubey, R Dosselmann, E Bargiacchi, J Inglada ISO JTC1/SC22/WG21: Programming Language C++, accessed 9 Aug. 2020. http …, 2019 | 6 | 2019 |
Dynamic resource allocation for multi-camera systems E Bargiacchi Master's thesis, University of Amsterdam, 2016 | 3 | 2016 |
A Brief Guide to Multi-Objective Reinforcement Learning and Planning CF Hayes, R Rădulescu, E Bargiacchi, J Kallstrom, M Macfarlane, ... Proceedings of the 2023 International Conference on Autonomous Agents and …, 2023 | 2 | 2023 |
Dutch Nao Team Team Description for RoboCup 2014-Joao Pessoa, Brasil P de Kok, D ten Velthuis, N Backer, J van Eck, F Voorter, A Visser, ... University of Amsterdam, TU Delft & Maastricht University, 2014 | 2 | 2014 |
Heuristic coordination in cooperative multi-agent reinforcement learning R Petri, E Bargiacchi, H Aldewereld, D Roijers Proceedings van de 33rd Benelux Conference on Artificial Intelligence en …, 2021 | 1 | 2021 |
Thompson sampling for loosely-coupled multi-agent systems: An application to wind farm control T Verstraeten, E Bargiacchi, PJ Libin, J Helsen, DM Roijers, A Nowé Adaptive and Learning Agents Workshop, 2020 | 1 | 2020 |
Online Planning in POMDPs with State-Requests R Avalos, E Bargiacchi, A Nowé, DM Roijers, FA Oliehoek arXiv preprint arXiv:2407.18812, 2024 | | 2024 |
Interactively Learning the User's Utility for Best-Arm Identification in Multi-Objective Multi-Armed Bandits M Reymond, E Bargiacchi, DM Roijers, A Nowé Proceedings of the 23rd International Conference on Autonomous Agents and …, 2024 | | 2024 |
Controlling Large Scale Multi-Agent Environments with Model-Based Reinforcement Learning E Bargiacchi | | 2024 |