Follow
James J DiCarlo
James J DiCarlo
Verified email at mit.edu
Title
Cited by
Cited by
Year
Performance-optimized hierarchical models predict neural responses in higher visual cortex
DLK Yamins, H Hong, CF Cadieu, EA Solomon, D Seibert, JJ DiCarlo
Proceedings of the national academy of sciences 111 (23), 8619-8624, 2014
22912014
How does the brain solve visual object recognition?
JJ DiCarlo, D Zoccolan, NC Rust
Neuron 73 (3), 415-434, 2012
20932012
Using goal-driven deep learning models to understand sensory cortex
DLK Yamins, JJ DiCarlo
Nature neuroscience 19 (3), 356-365, 2016
18072016
Untangling invariant object recognition
JJ DiCarlo, DD Cox
Trends in cognitive sciences 11 (8), 333-341, 2007
11432007
Fast readout of object identity from macaque inferior temporal cortex
CP Hung, G Kreiman, T Poggio, JJ DiCarlo
Science 310 (5749), 863-866, 2005
10292005
Deep neural networks rival the representation of primate IT cortex for core visual object recognition
CF Cadieu, H Hong, DLK Yamins, N Pinto, D Ardila, EA Solomon, ...
PLoS computational biology 10 (12), e1003963, 2014
8582014
Why is real-world visual object recognition hard?
N Pinto, DD Cox, JJ DiCarlo
PLoS computational biology 4 (1), e27, 2008
7702008
Brain-score: Which artificial neural network for object recognition is most brain-like?
M Schrimpf, J Kubilius, H Hong, NJ Majaj, R Rajalingham, EB Issa, K Kar, ...
BioRxiv, 407007, 2018
5922018
Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior
K Kar, J Kubilius, K Schmidt, EB Issa, JJ DiCarlo
Nature neuroscience 22 (6), 974-983, 2019
5112019
Neural population control via deep image synthesis
P Bashivan, K Kar, JJ DiCarlo
Science 364 (6439), eaav9436, 2019
4682019
Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks
R Rajalingham, EB Issa, P Bashivan, K Kar, K Schmidt, JJ DiCarlo
Journal of Neuroscience 38 (33), 7255-7269, 2018
4212018
Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT
NC Rust, JJ DiCarlo
Journal of Neuroscience 30 (39), 12978-12995, 2010
4152010
Unsupervised neural network models of the ventral visual stream
C Zhuang, S Yan, A Nayebi, M Schrimpf, MC Frank, JJ DiCarlo, ...
Proceedings of the National Academy of Sciences 118 (3), e2014196118, 2021
4072021
A high-throughput screening approach to discovering good forms of biologically inspired visual representation
N Pinto, D Doukhan, JJ DiCarlo, DD Cox
PLoS computational biology 5 (11), e1000579, 2009
3932009
Explicit information for category-orthogonal object properties increases along the ventral stream
H Hong, DLK Yamins, NJ Majaj, JJ DiCarlo
Nature neuroscience 19 (4), 613-622, 2016
3822016
Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex
G Kreiman, CP Hung, A Kraskov, RQ Quiroga, T Poggio, JJ DiCarlo
Neuron 49 (3), 433-445, 2006
3702006
Stimulus configuration, classical conditioning, and hippocampal function.
NA Schmajuk, JJ DiCarlo
Psychological review 99 (2), 268, 1992
3331992
Threedworld: A platform for interactive multi-modal physical simulation
C Gan, J Schwartz, S Alter, D Mrowca, M Schrimpf, J Traer, J De Freitas, ...
arXiv preprint arXiv:2007.04954, 2020
3202020
Unsupervised natural experience rapidly alters invariant object representation in visual cortex
N Li, JJ DiCarlo
science 321 (5895), 1502-1507, 2008
3152008
Discrimination training alters object representations in human extrastriate cortex
HPO de Beeck, CI Baker, JJ DiCarlo, NG Kanwisher
Journal of Neuroscience 26 (50), 13025-13036, 2006
3132006
The system can't perform the operation now. Try again later.
Articles 1–20