Follow
Xiaoting Shao
Xiaoting Shao
Verified email at cs.tu-darmstadt.de
Title
Cited by
Cited by
Year
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P Schramowski, W Stammer, S Teso, A Brugger, F Herbert, X Shao, ...
Nature Machine Intelligence 2 (8), 476-486, 2020
2432020
Random sum-product networks: A simple and effective approach to probabilistic deep learning
R Peharz, A Vergari, K Stelzner, A Molina, X Shao, M Trapp, K Kersting, ...
Uncertainty in Artificial Intelligence, 334-344, 2020
1302020
Conditional sum-product networks: Imposing structure on deep probabilistic architectures
X Shao, A Molina, A Vergari, K Stelzner, R Peharz, T Liebig, K Kersting
International Conference on Probabilistic Graphical Models, 401-412, 2020
472020
Right for better reasons: Training differentiable models by constraining their influence functions
X Shao, A Skryagin, W Stammer, P Schramowski, K Kersting
Proceedings of the AAAI Conference on Artificial Intelligence 35 (11), 9533-9540, 2021
352021
Neural-symbolic argumentation mining: An argument in favor of deep learning and reasoning
A Galassi, K Kersting, M Lippi, X Shao, P Torroni
Frontiers in big Data 2, 52, 2020
202020
Right for the wrong scientific reasons: Revising deep networks by interacting with their explanations
P Schramowski, W Stammer, S Teso, A Brugger, HG Luigs, AK Mahlein, ...
arXiv preprint arXiv:2001.05371, 2020
202020
Conditional sum-product networks: Modular probabilistic circuits via gate functions
X Shao, A Molina, A Vergari, K Stelzner, R Peharz, T Liebig, K Kersting
International Journal of Approximate Reasoning 140, 298-313, 2022
172022
Towards understanding and arguing with classifiers: Recent progress
X Shao, T Rienstra, M Thimm, K Kersting
Datenbank-Spektrum 20 (2), 171-180, 2020
92020
Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat Mach Intell 2: 476–486
P Schramowski, W Stammer, S Teso, A Brugger, F Herbert, X Shao, ...
62020
Right for the right latent factors: debiasing generative models via disentanglement
X Shao, K Stelzner, K Kersting
arXiv preprint arXiv:2202.00391, 2022
52022
Independence and D-separation in Abstract Argumentation.
T Rienstra, M Thimm, K Kersting, X Shao
KR, 713-722, 2020
52020
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
X Shao, K Kersting
arXiv preprint arXiv:2205.07774, 2022
22022
Modelling Multivariate Ranking Functions with Min-Sum Networks
X Shao, Z Yu, A Skryagin, T Rienstra, M Thimm, K Kersting
Scalable Uncertainty Management: 14th International Conference, SUM 2020 …, 2020
12020
Explaining and Interactively Debugging Deep Models
X Shao
Technische Universität Darmstadt, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–14