Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations H Lee, R Grosse, R Ranganath, AY Ng Proceedings of the 26th annual international conference on machine learning …, 2009 | 3520 | 2009 |
Black box variational inference R Ranganath, S Gerrish, D Blei Artificial intelligence and statistics, 814-822, 2014 | 1398 | 2014 |
Clinicalbert: Modeling clinical notes and predicting hospital readmission K Huang, J Altosaar, R Ranganath arXiv preprint arXiv:1904.05342, 2019 | 933 | 2019 |
Automatic differentiation variational inference A Kucukelbir, D Tran, R Ranganath, A Gelman, DM Blei Journal of machine learning research 18 (14), 1-45, 2017 | 897 | 2017 |
Unsupervised learning of hierarchical representations with convolutional deep belief networks H Lee, R Grosse, R Ranganath, AY Ng Communications of the ACM 54 (10), 95-103, 2011 | 523 | 2011 |
Hierarchical variational models R Ranganath, D Tran, D Blei International conference on machine learning, 324-333, 2016 | 386 | 2016 |
Backprop kf: Learning discriminative deterministic state estimators T Haarnoja, A Ajay, S Levine, P Abbeel Advances in neural information processing systems 29, 2016 | 365* | 2016 |
Hierarchical implicit models and likelihood-free variational inference D Tran, R Ranganath, D Blei Advances in Neural Information Processing Systems 30, 2017 | 361* | 2017 |
A review of challenges and opportunities in machine learning for health M Ghassemi, T Naumann, P Schulam, AL Beam, IY Chen, R Ranganath AMIA Summits on Translational Science Proceedings 2020, 191, 2020 | 344 | 2020 |
Automatic variational inference in Stan A Kucukelbir, R Ranganath, A Gelman, D Blei Advances in neural information processing systems 28, 2015 | 304 | 2015 |
Variational sequential monte carlo C Naesseth, S Linderman, R Ranganath, D Blei International conference on artificial intelligence and statistics, 968-977, 2018 | 254 | 2018 |
Deep survival analysis R Ranganath, A Perotte, N Elhadad, D Blei Machine Learning for Healthcare Conference, 101-114, 2016 | 240 | 2016 |
The role of machine learning in clinical research: transforming the future of evidence generation EH Weissler, T Naumann, T Andersson, R Ranganath, O Elemento, Y Luo, ... Trials 22, 1-15, 2021 | 214 | 2021 |
The variational Gaussian process D Tran, R Ranganath, DM Blei arXiv preprint arXiv:1511.06499, 2015 | 212 | 2015 |
Reproducibility in machine learning for health research: Still a ways to go MBA McDermott, S Wang, N Marinsek, R Ranganath, L Foschini, ... Science Translational Medicine 13 (586), eabb1655, 2021 | 200 | 2021 |
Support and invertibility in domain-invariant representations FD Johansson, D Sontag, R Ranganath arXiv preprint arXiv:1903.03448, 2019 | 199 | 2019 |
Variational Inference via Upper Bound Minimization AB Dieng, D Tran, R Ranganath, J Paisley, D Blei Advances in Neural Information Processing Systems 30, 2017 | 180 | 2017 |
Offline rl without off-policy evaluation D Brandfonbrener, W Whitney, R Ranganath, J Bruna Advances in neural information processing systems 34, 4933-4946, 2021 | 162 | 2021 |
Deep exponential families R Ranganath, L Tang, L Charlin, D Blei Artificial intelligence and statistics, 762-771, 2015 | 160 | 2015 |
Extracting social meaning: Identifying interactional style in spoken conversation D Jurafsky, R Ranganath, D McFarland Proceedings of Human Language Technologies: The 2009 Annual Conference of …, 2009 | 148 | 2009 |