Recurrence is required to capture the representational dynamics of the human visual system TC Kietzmann, CJ Spoerer, LKA Sörensen, RM Cichy, O Hauk, ... Proceedings of the National Academy of Sciences 116 (43), 21854-21863, 2019 | 408 | 2019 |
Recurrent convolutional neural networks: a better model of biological object recognition CJ Spoerer, P McClure, N Kriegeskorte Frontiers in psychology 8, 1551, 2017 | 266 | 2017 |
Individual differences among deep neural network models J Mehrer, CJ Spoerer, N Kriegeskorte, TC Kietzmann Nature communications 11 (1), 5725, 2020 | 167 | 2020 |
An ecologically motivated image dataset for deep learning yields better models of human vision J Mehrer, CJ Spoerer, EC Jones, N Kriegeskorte, TC Kietzmann Proceedings of the National Academy of Sciences 118 (8), e2011417118, 2021 | 141 | 2021 |
Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision CJ Spoerer, TC Kietzmann, J Mehrer, I Charest, N Kriegeskorte PLoS computational biology 16 (10), e1008215, 2020 | 135* | 2020 |
A computational exploration of complementary learning mechanisms in the primate ventral visual pathway CJ Spoerer, A Eguchi, SM Stringer Vision Research 119, 16-28, 2016 | 6 | 2016 |
Corrigendum: recurrent convolutional neural networks: a better model of biological object recognition CJ Spoerer, P McClure, N Kriegeskorte Frontiers in Psychology 9, 1695, 2018 | 2 | 2018 |
Recurrent convolutional neural networks as models of biological object recognition C Spoerer | | 2020 |
Recurrent convolutional neural networks suppress occluders and enhance targets in occluded object recognition CJ Spoerer, N Kriegeskorte Conference on Cognitive Computational Neuroscience, 2017 | | 2017 |
Representational dynamics in the human ventral stream captured in deep recurrent neural nets TC Kietzmann, CJ Spoerer, L Sörensen, RM Cichy, O Hauk, ... | | |