Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence LR Kolozsvari, T Bérczes, A Hajdu, R Gesztelyi, A Tiba, I Varga, ... MedRxiv, 2020.04. 17.20069666, 2020 | 33 | 2020 |
Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence: An application on the first and second waves LR Kolozsvári, T Bérczes, A Hajdu, R Gesztelyi, A Tiba, I Varga, B Ala'a, ... Informatics in Medicine Unlocked 25, 100691, 2021 | 30 | 2021 |
Isocyanide substitution in acridine orange shifts DNA damage-mediated phototoxicity to permeabilization of the lysosomal membrane in cancer cells C Bankó, ZL Nagy, M Nagy, GG Szemán-Nagy, I Rebenku, L Imre, A Tiba, ... Cancers 13 (22), 5652, 2021 | 6 | 2021 |
Detecting outlier and poor quality medical images with an ensemble-based deep learning system A Tiba, Z Bartik, H Toman, A Hajdu 2019 11th International Symposium on Image and Signal Processing and …, 2019 | 6 | 2019 |
Convolutional neural network for predicting the spread of cancer O Lantang, A Tiba, A Hajdu, G Terdik 2019 10th IEEE International Conference on Cognitive Infocommunications …, 2019 | 5 | 2019 |
Comparison of single and ensemble-based convolutional neural networks for cancerous image classification O Lantang, G Terdik, A Hajdu, A Tiba Annales Mathematicae et Informaticae 54, 45-56, 2021 | 2 | 2021 |
Optimizing majority voting based systems under a resource constraint for multiclass problems A Tiba, A Hajdu, G Terdik, H Tomán Progress in Industrial Mathematics at ECMI 2018, 529-534, 2019 | 2 | 2019 |
Efficient texture regularity estimation for second order statistical descriptors A Tiba, B Harangi, A Hajdu Proceedings of the 10th International Symposium on Image and Signal …, 2017 | 2 | 2017 |
A stochastic approach to handle resource constraints as knapsack problems in ensemble pruning A Hajdu, G Terdik, A Tiba, H Tomán Machine Learning, 1-45, 2022 | 1 | 2022 |
Investigation of the efficiency of an interconnected convolutional neural network by classifying medical images O Lantang, G Terdik, A Hajdu, A Tiba Annales Mathematicae et Informaticae 53, 219-234, 2021 | 1 | 2021 |
Replacing the SIR epidemic model with a neural network and training it further to increase prediction accuracy G Bogacsovics, A Hajdu, R Lakatos, M Beregi-Kovács, A Tiba, H Tomán Annales Mathematicae et Informaticae 53, 73-91, 2021 | 1 | 2021 |
Detecting Periodicity in Digital Images by the LLL Algorithm L Hajdu, B Harangi, A Tiba, A Hajdu Progress in Industrial Mathematics at ECMI 2018, 613-619, 2019 | 1 | 2019 |
A Cloud-based Machine Learning Pipeline for the Efficient Extraction of Insights from Customer Reviews R Lakatos, G Bogacsovics, B Harangi, I Lakatos, A Tiba, J Toth, M Szabo, ... arXiv preprint arXiv:2306.07786, 2023 | | 2023 |
Adatelemzési folyamat és keretrendszer a közigazgatás számára G Bogacsovics, A Hajdu, B Harangi, I Lakatos, R Lakatos, M Szabó, ... KözigazgatásTudomány 1 (2), 146-158, 2021 | | 2021 |
Napelemfarmok Magyarország területén történő elhelyezését segítő döntéstámogató rendszer fejlesztése G Bogacsovics, A Hajdu, B Harangi, I Lakatos, R Lakatos, M Szabó, ... KözigazgatásTudomány 1 (2), 134-145, 2021 | | 2021 |
Data Analysis Process and Framework for Public Administrations G Bogacsovics, A Hajdu, B Harangi, I Lakatos, R Lakatos, M Szabo, ... Kozigazgatas Tudomany 1, 146, 2021 | | 2021 |
Development of a Decision Support System for the Sitting of Solar Farms in Hungary G Bogacsovics, A Hajdu, B Harangi, I Lakatos, R Lakatos, M Szabo, ... Kozigazgatas Tudomany 1, 134, 2021 | | 2021 |
PREDICTING OF STROKE RISK BASED ON ICD CODES USING GRAPH-BASED CONVOLUTIONAL NEURAL NETWORKS. J Zsuga, S Harsanyi, A Tiba, T Berczes, A Berczes INTERNATIONAL JOURNAL OF STROKE 15 (1_ SUPPL), 380-380, 2020 | | 2020 |
A stochastic approach to handle knapsack problems in the creation of ensembles A Hajdu, G Terdik, A Tiba, H Toman arXiv preprint arXiv:2004.08101, 2020 | | 2020 |
Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence (preprint) LR Kolozsvari, T Berczes, A Hajdu, R Gesztelyi, A TIba, I Varga, B Ala'a, ... | | 2020 |