Yangians and classical Lie algebras A Molev American Mathematical Soc., 2007 | 358 | 2007 |

Yangians and classical Lie algebras A Molev, M Nazarov, G Ol'shanskii Russian Mathematical Surveys 51 (2), 205, 1996 | 315 | 1996 |

Gelfand–Tsetlin bases for classical Lie algebras AI Molev Handbook of algebra 4, 109-170, 2006 | 154 | 2006 |

A Littlewood-Richardson rule for factorial Schur functions A Molev, B Sagan Transactions of the American Mathematical Society 351 (11), 4429-4443, 1999 | 122 | 1999 |

Yangians and their applications AI Molev Handbook of algebra 3, 907-959, 2003 | 113 | 2003 |

Coideal subalgebras in quantum affine algebras AI Molev, E Ragoucy, P Sorba Reviews in Mathematical Physics 15 (08), 789-822, 2003 | 95 | 2003 |

Finite-dimensional irreducible representations of twisted Yangians AI Molev Journal of Mathematical Physics 39 (10), 5559-5600, 1998 | 77 | 1998 |

On the *R*-Matrix Realization of Yangians and their RepresentationsD Arnaudon, A Molev, E Ragoucy Annales Henri Poincaré 7 (7), 1269-1325, 2006 | 70 | 2006 |

Capelli identities for classical Lie algebras A Molev, M Nazarov Mathematische Annalen 313 (2), 315-357, 1999 | 70 | 1999 |

Representations of reflection algebras AI Molev, E Ragoucy Reviews in Mathematical Physics 14 (03), 317-342, 2002 | 68 | 2002 |

A basis for representations of symplectic Lie algebras AI Molev Communications in mathematical physics 201, 591-618, 1999 | 66 | 1999 |

Feigin–Frenkel center in types B, C and D AI Molev Inventiones mathematicae 191 (1), 1-34, 2013 | 58 | 2013 |

Yangians and their applications, in “Handbook of Algebra”, Vol. 3,(M. Hazewinkel, ed.) AI Molev arXiv preprint math/0211288, 907-959, 2003 | 57 | 2003 |

Factorial supersymmetric Schur functions and super Capelli identities A Molev arXiv preprint q-alg/9606008, 1996 | 54 | 1996 |

Gelfand-Tsetlin basis for representations of Yangians AI Molev letters in mathematical physics 30, 53-60, 1994 | 51 | 1994 |

Explicit generators in rectangular affine -algebras of type *A*T Arakawa, A Molev Letters in Mathematical Physics 107 (1), 47-59, 2017 | 50 | 2017 |

The Gelfand–Kirillov conjecture and Gelfand–Tsetlin modules for finite W-algebras V Futorny, A Molev, S Ovsienko Advances in Mathematics 223 (3), 773-796, 2010 | 49 | 2010 |

On higher-order Sugawara operators AV Chervov, AI Molev International Mathematics Research Notices 2009 (9), 1612-1635, 2009 | 49 | 2009 |

Isomorphism Between the *R*-Matrix and Drinfeld Presentations of Yangian in Types *B*, *C* and *D*N Jing, M Liu, A Molev Communications in Mathematical Physics 361, 827-872, 2018 | 46 | 2018 |

Sklyanin determinant, Laplace operators, and characteristic identities for classical Lie algebras A Molev Journal of Mathematical Physics 36 (2), 923-943, 1995 | 45 | 1995 |