Spremljaj
Matthias Hüser
Matthias Hüser
TriNetX, Senior Data Scientist
Preverjeni e-poštni naslov na trinetx.com - Domača stran
Naslov
Navedeno
Navedeno
Leto
Comprehensive analysis of alternative splicing across tumors from 8,705 patients
A Kahles, KV Lehmann, NC Toussaint, M Hüser, SG Stark, ...
Cancer cell 34 (2), 211-224. e6, 2018
8062018
Early prediction of circulatory failure in the intensive care unit using machine learning
SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ...
Nature medicine 26 (3), 364-373, 2020
3662020
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
V Fortuin, M Hüser, F Locatello, H Strathmann, G Rätsch
ICLR 2019, 2018
1942018
Improving clinical predictions through unsupervised time series representation learning
X Lyu, M Hüser, SL Hyland, G Zerveas, G Rätsch
Machine Learning for Health (ML4H) Workshop at NeurIPS 2018. arXiv:1812.00490, 2018
642018
Neighborhood contrastive learning applied to online patient monitoring
H Yèche, G Dresdner, F Locatello, M Hüser, G Rätsch
International Conference on Machine Learning, 11964-11974, 2021
402021
HiRID, a high time-resolution ICU dataset (version 1.1. 1)
M Faltys, M Zimmermann, X Lyu, M Hüser, S Hyland, G Rätsch, T Merz
Physio. Net 10, 2021
362021
HiRID-ICU-Benchmark--A Comprehensive Machine Learning Benchmark on High-resolution ICU Data
H Yèche, R Kuznetsova, M Zimmermann, M Hüser, X Lyu, M Faltys, ...
arXiv preprint arXiv:2111.08536, 2021
332021
T-DPSOM: an interpretable clustering method for unsupervised learning of patient health states
L Manduchi, M Hüser, M Faltys, J Vogt, G Rätsch, V Fortuin
Proceedings of the Conference on Health, Inference, and Learning, 236-245, 2021
242021
Forecasting intracranial hypertension using multi-scale waveform metrics
M Hüser, A Kündig, W Karlen, V De Luca, M Jaggi
Physiological measurement 41 (1), 014001, 2020
212020
DPSOM: Deep Probabilistic Clustering with Self-Organizing Maps
L Manduchi, M Hüser, G Rätsch, V Fortuin
arXiv preprint arXiv:1910.01590, 2019
212019
Machine learning for early prediction of circulatory failure in the intensive care unit
SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ...
arXiv preprint arXiv:1904.07990, 2019
122019
Early prediction of respiratory failure in the intensive care unit
M Hüser, M Faltys, X Lyu, C Barber, SL Hyland, TM Merz, G Rätsch
arXiv preprint arXiv:2105.05728, 2021
42021
Forecasting intracranial hypertension using waveform and time series features
M Hüser, V De Luca, M Jaggi, W Karlen, E Keller
Vasospasm, The International Conference on Neurovascular Events after …, 2015
42015
A comprehensive ml-based respiratory monitoring system for physiological monitoring & resource planning in the icu
M Hüser, X Lyu, M Faltys, A Pace, M Hoche, SL Hyland, H Yèche, ...
medRxiv, 2024.01. 23.24301516, 2024
32024
WRSE-a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU
J Heitz, J Ficek, M Faltys, TM Merz, G Rätsch, M Hüser
Survival Prediction-Algorithms, Challenges and Applications, 54-69, 2021
32021
Forecasting intracranial hypertension using time series and waveform features
M Hüser
MSc. thesis, ETH Zurich, 2015
32015
Variational PSOM: Deep Probabilistic Clustering with Self-Organizing Maps
L Manduchi, M Hüser, G Rätsch, V Fortuin
22019
An empirical study on KDIGO-defined acute kidney injury prediction in the intensive care unit
X Lyu, B Fan, M Hüser, P Hartout, T Gumbsch, M Faltys, TM Merz, ...
Bioinformatics 40 (Supplement_1), i247-i256, 2024
12024
Machine Learning Approaches for Patient Monitoring in the intensive care unit
M Hüser
ETH Zurich, 2021
12021
Predicting circulatory system deterioration in intensive care unit patients.
SL Hyland, M Hüser, X Lyu, M Faltys, T Merz, G Rätsch
AIH@ IJCAI, 87-92, 2018
12018
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20