Spremljaj
Matthias Hüser
Matthias Hüser
TrinetX, Senior Data Scientist
Preverjeni e-poštni naslov na trinetx.com - Domača stran
Naslov
Navedeno
Navedeno
Leto
Comprehensive analysis of alternative splicing across tumors from 8,705 patients
A Kahles, KV Lehmann, NC Toussaint, M Hüser, SG Stark, ...
Cancer cell 34 (2), 211-224. e6, 2018
6812018
Early prediction of circulatory failure in the intensive care unit using machine learning
SL Hyland, M Faltys, M Hüser, X Lyu, T Gumbsch, C Esteban, C Bock, ...
Nature medicine 26 (3), 364-373, 2020
2772020
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
V Fortuin, M Hüser, F Locatello, H Strathmann, G Rätsch
ICLR 2019, 2018
1652018
Improving clinical predictions through unsupervised time series representation learning
X Lyu, M Hüser, SL Hyland, G Zerveas, G Rätsch
Machine Learning for Health (ML4H) Workshop at NeurIPS 2018. arXiv:1812.00490, 2018
512018
Neighborhood contrastive learning applied to online patient monitoring
H Yèche, G Dresdner, F Locatello, M Hüser, G Rätsch
International Conference on Machine Learning, 11964-11974, 2021
292021
HiRID, a high time-resolution ICU dataset (version 1.1. 1)
M Faltys, M Zimmermann, X Lyu, M Hüser, S Hyland, G Rätsch, T Merz
Physio. Net 10, 2021
282021
HiRID-ICU-Benchmark--A Comprehensive Machine Learning Benchmark on High-resolution ICU Data
H Yèche, R Kuznetsova, M Zimmermann, M Hüser, X Lyu, M Faltys, ...
arXiv preprint arXiv:2111.08536, 2021
222021
DPSOM: Deep Probabilistic Clustering with Self-Organizing Maps
L Manduchi, M Hüser, G Rätsch, V Fortuin
arXiv preprint arXiv:1910.01590, 2019
202019
T-DPSOM: an interpretable clustering method for unsupervised learning of patient health states
L Manduchi, M Hüser, M Faltys, J Vogt, G Rätsch, V Fortuin
Proceedings of the Conference on Health, Inference, and Learning, 236-245, 2021
152021
Forecasting intracranial hypertension using multi-scale waveform metrics
M Hüser, A Kündig, W Karlen, V De Luca, M Jaggi
Physiological measurement 41 (1), 014001, 2020
142020
Deep Self-Organization: Interpretable Discreate Representation Learning on Time Series
V Fortuin, M Huser, F Locatello, H Stratman, G Ratsch
arXiv preprint arXiv:1806.02199, 2018
72018
Early prediction of respiratory failure in the intensive care unit
M Hüser, M Faltys, X Lyu, C Barber, SL Hyland, TM Merz, G Rätsch
arXiv preprint arXiv:2105.05728, 2021
32021
Forecasting intracranial hypertension using waveform and time series features
M Hüser, V De Luca, M Jaggi, W Karlen, E Keller
Vasospasm, The International Conference on Neurovascular Events after …, 2015
32015
A comprehensive ml-based respiratory monitoring system for physiological monitoring & resource planning in the icu
M Hüser, X Lyu, M Faltys, A Pace, M Hoche, SL Hyland, H Yèche, ...
medRxiv, 2024.01. 23.24301516, 2024
22024
WRSE-a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU
J Heitz, J Ficek, M Faltys, TM Merz, G Rätsch, M Hüser
Survival Prediction-Algorithms, Challenges and Applications, 54-69, 2021
22021
Variational PSOM: Deep Probabilistic Clustering with Self-Organizing Maps
L Manduchi, M Hüser, G Rätsch, V Fortuin
22019
Forecasting intracranial hypertension using time series and waveform features
M Hüser
MSc. thesis, ETH Zurich, 2015
22015
Machine Learning Approaches for Patient Monitoring in the intensive care unit
M Hüser
ETH Zurich, 2021
12021
Temporal prediction of cerebral hypoxia in neurointensive care patients: a feasibility study
V De Luca, M Hüser, M Jaggi, W Karlen, E Keller
16th International Symposium on Intracranial Pressure and Neuromonitoring, 2016
12016
Predicting Circulatory System Deterioration in Intensive Care Unit Patients
SL Hyland, M Faltys, M Hüser, X Lyu, C Esteban, T Merz, G Rätsch
Proceedings of the 1st Joint Workshop on AI in Health, 0
1*
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20