Spremljaj
Jan G. Rittig
Jan G. Rittig
RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Systemverfahrenstechnik
Preverjeni e-poštni naslov na rwth-aachen.de
Naslov
Navedeno
Navedeno
Leto
Graph neural networks for prediction of fuel ignition quality
AM Schweidtmann, JG Rittig, A König, M Grohe, A Mitsos, M Dahmen
Energy & Fuels 34 (9), 11395-11407, 2020
1272020
Summit: benchmarking machine learning methods for reaction optimisation
KC Felton, JG Rittig, AA Lapkin
Chemistry‐Methods 1 (2), 116-122, 2021
892021
Graph neural networks for temperature-dependent activity coefficient prediction of solutes in ionic liquids
JG Rittig, KB Hicham, AM Schweidtmann, M Dahmen, A Mitsos
Computers & Chemical Engineering 171, 108153, 2023
412023
Physical pooling functions in graph neural networks for molecular property prediction
AM Schweidtmann, JG Rittig, JM Weber, M Grohe, M Dahmen, ...
Computers & Chemical Engineering 172, 108202, 2023
282023
Graph machine learning for design of high‐octane fuels
JG Rittig, M Ritzert, AM Schweidtmann, S Winkler, JM Weber, P Morsch, ...
AIChE Journal 69 (4), e17971, 2023
212023
Designing production-optimal alternative fuels for conventional, flexible-fuel, and ultra-high efficiency engines
A König, M Siska, AM Schweidtmann, JG Rittig, J Viell, A Mitsos, ...
Chemical Engineering Science 237, 116562, 2021
212021
Graph Neural Networks for the Prediction of Molecular Structure–Property Relationships
JG Rittig, Q Gao, M Dahmen, A Mitsos, AM Schweidtmann
182023
Gibbs–Duhem-informed neural networks for binary activity coefficient prediction
JG Rittig, KC Felton, AA Lapkin, A Mitsos
Digital Discovery 2 (6), 1752-1767, 2023
172023
Molecular Design of Fuels for Maximum Spark-Ignition Engine Efficiency by Combining Predictive Thermodynamics and Machine Learning
L Fleitmann, P Ackermann, J Schilling, J Kleinekorte, JG Rittig, ...
Energy & Fuels 37 (3), 2213-2229, 2023
122023
ML-SAFT: a machine learning framework for PCP-SAFT parameter prediction
KC Felton, L Raßpe-Lange, JG Rittig, K Leonhard, A Mitsos, ...
Chemical Engineering Journal 492, 151999, 2024
62024
Graph neural networks for surfactant multi-property prediction
C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos
Colloids and Surfaces A: Physicochemical and Engineering Aspects 694, 134133, 2024
52024
Thermodynamics-consistent graph neural networks
JG Rittig, A Mitsos
Chemical Science 15 (44), 18504-18512, 2024
52024
Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks
C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos
Journal of Chemical Theory and Computation 20 (13), 5695-5707, 2024
22024
GraphXForm: Graph transformer for computer-aided molecular design with application to extraction
J Pirnay, JG Rittig, AB Wolf, M Grohe, J Burger, A Mitsos, DG Grimm
arXiv preprint arXiv:2411.01667, 2024
12024
Multi-fidelity graph neural networks for predicting toluene/water partition coefficients
T Nevolianis, JG Rittig, A Mitsos, K Leonhard
12024
Predicting the Temperature-Dependent CMC of Surfactant Mixtures with Graph Neural Networks
C Brozos, JG Rittig, S Bhattacharya, E Akanny, C Kohlmann, A Mitsos
arXiv preprint arXiv:2411.02224, 2024
2024
Thermodynamics-Informed Graph Neural Networks for Predicting Molecular and Mixture Properties
JG Rittig, K Felton, AA Lapkin, A Mitsos
2024 AIChE Annual Meeting, 2024
2024
Fuel Ignition Delay Maps for Molecularly Controlled Combustion
M Neumann, JG Rittig, AB Letaief, C Honecker, P Ackermann, A Mitsos, ...
Energy & Fuels 38 (14), 13264-13277, 2024
2024
Parameter estimation and dynamic optimization of an industrial fed-batch reactor
JG Rittig, JC Schulze, L Henrichfreise, S Recker, R Feller, A Mitsos, ...
Computer Aided Chemical Engineering 52, 1175-1180, 2023
2023
Computer-Aided Fuel Design with Generative Graph Machine Learning
JG Rittig, M Ritzert, AM Schweidtmann, S Winkler, JM Weber, P Morsch, ...
2022 AIChE Annual Meeting, 2022
2022
Sistem trenutno ne more izvesti postopka. Poskusite znova pozneje.
Članki 1–20