Follow
Matthew R. Carbone
Title
Cited by
Cited by
Year
Random Forest Machine Learning Models for Interpretable X-Ray Absorption Near-Edge Structure Spectrum-Property Relationships
SB Torrisi, MR Carbone, BA Rohr, JH Montoya, Y Ha, J Yano, SK Suram, ...
npj Computational Materials 6, 109, 2020
1252020
Classification of local chemical environments from x-ray absorption spectra using supervised machine learning
MR Carbone, S Yoo, M Topsakal, D Lu
Physical Review Materials 3 (3), 033604, 2019
1052019
Machine-learning X-ray absorption spectra to quantitative accuracy
MR Carbone, M Topsakal, D Lu, S Yoo
Physical Review Letters 124 (15), 156401, 2020
1012020
When not to use machine learning: A perspective on potential and limitations
MR Carbone
MRS Bulletin 47, 968–974, 2022
412022
Bond-Peierls polaron: Moderate mass enhancement and current-carrying ground state
MR Carbone, AJ Millis, DR Reichman, J Sous
Physical Review B 104 (14), L140307, 2021
252021
Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides
MR Carbone, MZ Mayers, DR Reichman
The Journal of Chemical Physics 152 (19), 2020
202020
Uncertainty-aware predictions of molecular x-ray absorption spectra using neural network ensembles
A Ghose, M Segal, F Meng, Z Liang, MS Hybertsen, X Qu, E Stavitski, ...
Physical Review Research 5 (1), 013180, 2023
192023
Predicting impurity spectral functions using machine learning
EJ Sturm, MR Carbone, D Lu, A Weichselbaum, RM Konik
Physical Review B 103 (24), 245118, 2021
192021
Numerically exact generalized Green's function cluster expansions for electron-phonon problems
MR Carbone, DR Reichman, J Sous
Physical Review B 104 (3), 035106, 2021
152021
Machine learning of Kondo physics using variational autoencoders and symbolic regression
C Miles, MR Carbone, EJ Sturm, D Lu, A Weichselbaum, K Barros, ...
Physical Review B 104 (23), 235111, 2021
142021
Harnessing neural networks for elucidating X-ray absorption structure–spectrum relationships in amorphous carbon
H Kwon, W Sun, T Hsu, W Jeong, F Aydin, S Sharma, F Meng, ...
The Journal of Physical Chemistry C 127 (33), 16473-16484, 2023
112023
Simulated sulfur K-edge X-ray absorption spectroscopy database of lithium thiophosphate solid electrolytes
H Guo, MR Carbone, C Cao, J Qu, Y Du, SM Bak, C Weiland, F Wang, ...
Scientific data 10 (1), 349, 2023
112023
Effective Trap-like Activated Dynamics in a Continuous Landscape
MR Carbone, V Astuti, M Baity-Jesi
Physical Review E 101 (5), 052304, 2020
92020
Lightshow: a Python package for generating computational x-ray absorption spectroscopy input files
MR Carbone, F Meng, C Vorwerk, B Maurer, F Peschel, X Qu, E Stavitski, ...
Journal of Open Source Software 8 (5182), 2023
82023
Self-driving multimodal studies at user facilities
PM Maffettone, DB Allan, SI Campbell, MR Carbone, TA Caswell, ...
arXiv preprint arXiv:2301.09177, 2023
82023
Decoding structure-spectrum relationships with physically organized latent spaces
Z Liang, MR Carbone, W Chen, F Meng, E Stavitski, D Lu, MS Hybertsen, ...
Physical Review Materials 7 (5), 053802, 2023
62023
Competition between energy-and entropy-driven activation in glasses
MR Carbone, M Baity-Jesi
Physical Review E 106 (2), 024603, 2022
62022
Flexible formulation of value for experiment interpretation and design
MR Carbone, HJ Kim, C Fernando, S Yoo, D Olds, H Joress, B DeCost, ...
Matter 7 (2), 685-696, 2024
4*2024
Machine learning the spectral function of a hole in a quantum antiferromagnet
J Lee, MR Carbone, W Yin
Physical Review B 107 (20), 205132, 2023
42023
Using machine learning to predict local chemical environments from x-ray absorption spectra
D Lu, M Carbone, M Topsakal, S Yoo
APS March Meeting Abstracts 2019, A18. 005, 2019
42019
The system can't perform the operation now. Try again later.
Articles 1–20