Follow
Zhiyun Lu
Title
Cited by
Cited by
Year
Learning compact recurrent neural networks
Z Lu, V Sindhwani, TN Sainath
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International …, 2016
1032016
How to scale up kernel methods to be as good as deep neural nets
Z Lu, A May, K Liu, AB Garakani, D Guo, A Bellet, L Fan, M Collins, ...
arXiv preprint arXiv:1411.4000, 2014
802014
Speech sentiment analysis via pre-trained features from end-to-end asr models
Z Lu, L Cao, Y Zhang, CC Chiu, J Fan
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
742020
Kernel approximation methods for speech recognition
A May, AB Garakani, Z Lu, D Guo, K Liu, A Bellet, L Fan, M Collins, D Hsu, ...
The Journal of Machine Learning Research 20 (1), 2121-2156, 2019
332019
Improving streaming automatic speech recognition with non-streaming model distillation on unsupervised data
T Doutre, W Han, M Ma, Z Lu, CC Chiu, R Pang, A Narayanan, A Misra, ...
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
232021
A large scale speech sentiment corpus
E Chen, Z Lu, H Xu, L Cao, Y Zhang, J Fan
Proceedings of the Twelfth Language Resources and Evaluation Conference …, 2020
232020
E2E Segmenter: Joint Segmenting and Decoding for Long-Form ASR
W Ronny Huang, S Chang, D Rybach, R Prabhavalkar, TN Sainath, ...
arXiv e-prints, arXiv: 2204.10749, 2022
19*2022
Selecting β-Divergence for Nonnegative Matrix Factorization by Score Matching
Z Lu, Z Yang, E Oja
Artificial Neural Networks and Machine Learning–ICANN 2012: 22nd …, 2012
192012
Exploring targeted universal adversarial perturbations to end-to-end asr models
Z Lu, W Han, Y Zhang, L Cao
arXiv preprint arXiv:2104.02757, 2021
172021
Improving the fusion of acoustic and text representations in RNN-T
C Zhang, B Li, Z Lu, TN Sainath, S Chang
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022
162022
Hyper-parameter tuning under a budget constraint
Z Lu, CK Chiang, F Sha
arXiv preprint arXiv:1902.00532, 2019
152019
A comparison between deep neural nets and kernel acoustic models for speech recognition
Z Lu, D Quo, AB Garakani, K Liu, A May, A Bellet, L Fan, M Collins, ...
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
142016
Less is more: Removing text-regions improves clip training efficiency and robustness
L Cao, B Zhang, C Chen, Y Yang, X Du, W Zhang, Z Lu, Y Zheng
arXiv preprint arXiv:2305.05095, 2023
112023
Uncertainty estimation with infinitesimal jackknife, its distribution and mean-field approximation
Z Lu, E Ie, F Sha
arXiv preprint arXiv:2006.07584, 2020
112020
Input length matters: Improving RNN-T and MWER training for long-form telephony speech recognition
Z Lu, Y Pan, T Doutre, P Haghani, L Cao, R Prabhavalkar, C Zhang, ...
arXiv preprint arXiv:2110.03841, 2021
92021
Unsupervised data selection via discrete speech representation for asr
Z Lu, Y Wang, Y Zhang, W Han, Z Chen, P Haghani
arXiv preprint arXiv:2204.01981, 2022
72022
Mean-field approximation to Gaussian-softmax integral with application to uncertainty estimation
Z Lu, E Ie, F Sha
arXiv preprint arXiv:2006.07584, 2020
72020
Input length matters: An empirical study of RNN-T and MWER training for long-form telephony speech recognition
Z Lu, Y Pan, T Doutre, L Cao, R Prabhavalkar, C Zhang, T Strohman
arXiv preprint arXiv:2110.03841, 2021
52021
Fei Sha. Uncertainty estimation with infinitesimal jackknife, its distribution and mean-field approximation
Z Lu, E Ie
arXiv preprint arXiv:2006.07584, 2020
52020
Fei Sha. Mean-field approximation to gaussian-softmax integral with application to uncertainty estimation
Z Lu, E Ie
arXiv preprint arXiv:2006.07584, 2020
52020
The system can't perform the operation now. Try again later.
Articles 1–20