Determining cell type abundance and expression from bulk tissues with digital cytometry AM Newman, CB Steen, CL Liu, AJ Gentles, AA Chaudhuri, F Scherer, ... Nature biotechnology 37 (7), 773-782, 2019 | 3103 | 2019 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 684 | 2024 |
" Hello AI": uncovering the onboarding needs of medical practitioners for human-AI collaborative decision-making CJ Cai, S Winter, D Steiner, L Wilcox, M Terry Proceedings of the ACM on Human-computer Interaction 3 (CSCW), 1-24, 2019 | 482 | 2019 |
Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer DF Steiner, R MacDonald, Y Liu, P Truszkowski, JD Hipp, C Gammage, ... The American journal of surgical pathology 42 (12), 1636-1646, 2018 | 475 | 2018 |
MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells DF Steiner, MF Thomas, JK Hu, Z Yang, JE Babiarz, CDC Allen, ... Immunity 35 (2), 169-181, 2011 | 446 | 2011 |
Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge W Bulten, K Kartasalo, PHC Chen, P Ström, H Pinckaers, K Nagpal, Y Cai, ... Nature medicine 28 (1), 154-163, 2022 | 387 | 2022 |
Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation A Majkowska, S Mittal, DF Steiner, JJ Reicher, SM McKinney, GE Duggan, ... Radiology 294 (2), 421-431, 2020 | 285 | 2020 |
Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens MS Khodadoust, N Olsson, LE Wagar, OAW Haabeth, B Chen, ... Nature 543 (7647), 723-727, 2017 | 283 | 2017 |
Deep learning-based survival prediction for multiple cancer types using histopathology images E Wulczyn, DF Steiner, Z Xu, A Sadhwani, H Wang, I Flament-Auvigne, ... PloS one 15 (6), e0233678, 2020 | 248 | 2020 |
Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens K Nagpal, D Foote, F Tan, Y Liu, PHC Chen, DF Steiner, N Manoj, ... JAMA oncology 6 (9), 1372-1380, 2020 | 181 | 2020 |
Distinct requirements of microRNAs in NK cell activation, survival, and function NA Bezman, E Cedars, DF Steiner, R Blelloch, DGT Hesslein, LL Lanier The Journal of Immunology 185 (7), 3835-3846, 2010 | 156 | 2010 |
Interpretable survival prediction for colorectal cancer using deep learning E Wulczyn, DF Steiner, M Moran, M Plass, R Reihs, F Tan, ... NPJ digital medicine 4 (1), 71, 2021 | 154 | 2021 |
MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production HH Pua, DF Steiner, S Patel, JR Gonzalez, JF Ortiz-Carpena, ... Immunity 44 (4), 821-832, 2016 | 147 | 2016 |
Determining breast cancer biomarker status and associated morphological features using deep learning P Gamble, R Jaroensri, H Wang, F Tan, M Moran, T Brown, ... Communications medicine 1 (1), 1-12, 2021 | 119 | 2021 |
Evaluation of the use of combined artificial intelligence and pathologist assessment to review and grade prostate biopsies DF Steiner, K Nagpal, R Sayres, DJ Foote, BD Wedin, A Pearce, CJ Cai, ... JAMA network open 3 (11), e2023267-e2023267, 2020 | 79 | 2020 |
Closing the translation gap: AI applications in digital pathology DF Steiner, PHC Chen, CH Mermel Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1875 (1), 188452, 2021 | 77 | 2021 |
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading E Wulczyn, K Nagpal, M Symonds, M Moran, M Plass, R Reihs, F Nader, ... Communications medicine 1 (1), 10, 2021 | 45 | 2021 |
Onboarding Materials as Cross-functional Boundary Objects for Developing AI Assistants CJ Cai, S Winter, D Steiner, L Wilcox, M Terry Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing …, 2021 | 44 | 2021 |
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images A Sadhwani, HW Chang, A Behrooz, T Brown, I Auvigne-Flament, H Patel, ... Scientific reports 11 (1), 16605, 2021 | 42 | 2021 |
Deep learning models for histologic grading of breast cancer and association with disease prognosis R Jaroensri, E Wulczyn, N Hegde, T Brown, I Flament-Auvigne, F Tan, ... NPJ Breast cancer 8 (1), 113, 2022 | 41 | 2022 |