Follow
Tal Linzen
Title
Cited by
Cited by
Year
Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference
RT McCoy, E Pavlick, T Linzen
Proceedings of the 57th Annual Meeting of the Association for Computational …, 2019
11622019
Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
T Linzen, E Dupoux, Y Goldberg
Transactions of the Association for Computational Linguistics 4, 521-535, 2016
9602016
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
A Srivastava, A Rastogi, A Rao, AAM Shoeb, A Abid, A Fisch, AR Brown, ...
arXiv preprint arXiv:2206.04615, 2022
8042022
Colorless green recurrent networks dream hierarchically
K Gulordava, P Bojanowski, E Grave, T Linzen, M Baroni
Proceedings of the 16th Annual Conference of the North American Chapter of …, 2018
5922018
Targeted Syntactic Evaluation of Language Models
R Marvin, T Linzen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language …, 2018
4272018
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
N Kim, T Linzen
EMNLP, 2020
2402020
Syntactic Structure from Deep Learning
T Linzen, M Baroni
Annual Reviews of Linguistics, 2021
2012021
Issues in evaluating semantic spaces using word analogies
T Linzen
Proceedings of the First Workshop on Evaluating Vector Space Representations …, 2016
1862016
How Can We Accelerate Progress Towards Human-like Linguistic Generalization?
T Linzen
Proceedings of the 58th Annual Meeting of the Association for Computational …, 2020
1792020
Syntactic Data Augmentation Increases Robustness to Inference Heuristics
J Min, RT McCoy, D Das, E Pitler, T Linzen
Proceedings of the 58th Annual Meeting of the Association for Computational …, 2020
1632020
BERTs of a feather do not generalize together: Large variability in generalization across models with similar test set performance
RT McCoy, J Min, T Linzen
Proceedings of BlackboxNLP 2020, 2019
1572019
Uncertainty and expectation in sentence processing: evidence from subcategorization distributions
T Linzen, TF Jaeger
Cognitive Science 40 (6), 1382-1411, 2016
1282016
Human few-shot learning of compositional instructions
BM Lake, T Linzen, M Baroni
Proceedings of the 41st Annual Conference of the Cognitive Science Society, 2019
1262019
Does syntax need to grow on trees? Sources of hierarchical inductive bias in sequence-to-sequence networks
RT McCoy, R Frank, T Linzen
Transactions of the Association for Computational Linguistics 8, 125--140, 2020
1042020
Probing What Different NLP Tasks Teach Machines about Function Word Comprehension
N Kim, R Patel, A Poliak, A Wang, P Xia, RT McCoy, I Tenney, A Ross, ...
arXiv preprint arXiv:1904.11544, 2019
1042019
In Spoken Word Recognition, the Future Predicts the Past
L Gwilliams, T Linzen, D Poeppel, A Marantz
Journal of Neuroscience 38 (35), 7585-7599, 2018
982018
Quantity doesn't buy quality syntax with neural language models
M van Schijndel, A Mueller, T Linzen
EMNLP 2019, 2019
942019
How much do language models copy from their training data? evaluating linguistic novelty in text generation using raven
RT McCoy, P Smolensky, T Linzen, J Gao, A Celikyilmaz
Transactions of the Association for Computational Linguistics 11, 652-670, 2023
872023
Revisiting the poverty of the stimulus: hierarchical generalization without a hierarchical bias in recurrent neural networks
RT McCoy, R Frank, T Linzen
Proceedings of the 40th Annual Conference of the Cognitive Science Society, 2018
862018
The MultiBERTs: BERT Reproductions for Robustness Analysis
T Sellam, S Yadlowsky, J Wei, N Saphra, A D'Amour, T Linzen, J Bastings, ...
ICLR 2022, 2021
832021
The system can't perform the operation now. Try again later.
Articles 1–20