Follow
Hugh Salimbeni
Hugh Salimbeni
Verified email at ic.ac.uk - Homepage
Title
Cited by
Cited by
Year
Deep unsupervised clustering with gaussian mixture variational autoencoders
N Dilokthanakul, PAM Mediano, M Garnelo, MCH Lee, H Salimbeni, ...
arXiv preprint arXiv:1611.02648, 2016
7282016
Doubly stochastic variational inference for deep Gaussian processes
H Salimbeni, M Deisenroth
Advances in neural information processing systems 30, 2017
5012017
Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
H Salimbeni, S Eleftheriadis, J Hensman
International Conference on Artificial Intelligence and Statistics, 2018
1092018
Gaussian process conditional density estimation
V Dutordoir, H Salimbeni, J Hensman, M Deisenroth
Advances in neural information processing systems 31, 2018
702018
Deep Gaussian processes with importance-weighted variational inference
H Salimbeni, V Dutordoir, J Hensman, M Deisenroth
International Conference on Machine Learning, 5589-5598, 2019
592019
A potential biomarker for treatment stratification in psychosis: evaluation of an [18F] FDOPA PET imaging approach
M Veronese, B Santangelo, S Jauhar, E D’Ambrosio, A Demjaha, ...
Neuropsychopharmacology 46 (6), 1122-1132, 2021
552021
Orthogonally decoupled variational Gaussian processes
H Salimbeni, CA Cheng, B Boots, M Deisenroth
Advances in neural information processing systems 31, 2018
532018
GPflux: A library for deep Gaussian processes
V Dutordoir, H Salimbeni, E Hambro, J McLeod, F Leibfried, A Artemev, ...
arXiv preprint arXiv:2104.05674, 2021
312021
Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv 2016
N Dilokthanakul, PAM Mediano, M Garnelo, MCH Lee, H Salimbeni, ...
arXiv preprint arXiv:1611.02648, 0
16
Deep unsupervised clustering with Gaussian mixture variational autoencoders. arXiv
N Dilokthanakul, PAM Mediano, M Garnelo, MCH Lee, H Salimbeni, ...
arXiv preprint arXiv:1611.02648, 2016
142016
Stochastic differential equations with variational wishart diffusions
M Jørgensen, M Deisenroth, H Salimbeni
International Conference on Machine Learning, 4974-4983, 2020
102020
Deeply non-stationary Gaussian processes
H Salimbeni, MP Deisenroth
NIPS Workshop on Bayesian Deep Learning, 2017
92017
Deep unsupervised clustering with gaussian mixture variational autoencoders
D Nat, AMM Pedro, G Marta, CHL Matthew, H Salimbeni, A Kai
arXiv preprint arXiv:1611.02648, 2016
92016
Deep Gaussian processes: advances in models and inference
H Salimbeni
Imperial College London, 2020
52020
Machine learning system
S Eleftheriadis, J Hensman, S John, H Salimbeni
US Patent 10,990,890, 2021
32021
Patch kernels for Gaussian processes in high-dimensional imaging problems
MCH Lee, H Salimbeni, MP Deisenroth, B Glocker
NIPS Workshop on Practical Bayesian Nonparametrics, 2016
12016
[18F] FDOPA PET imaging for prediction of treatment response in psychosis
G Nordio, R Easmin, B Santangelo, S Jauhar, E d'Ambrosio, A Demjaha, ...
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM 41 (1_ SUPPL), 51-52, 2021
2021
GPflux: ALibraryforDeepGaussianProcesses
V Dutordoir, H Salimbeni, E Hambro, J McLeod, F Leibfried, A Artemev, ...
Doubly Stochastic Inference for Deep Gaussian Processes
H Salimbeni
The system can't perform the operation now. Try again later.
Articles 1–19